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Abstract. Assume we are given a sample of points from some under-
lying distribution which contains several distinct clusters. Our goal is
to construct a neighborhood graph on the sample points such that clus-
ters are “identified”: that is, the subgraph induced by points from the
same cluster is connected, while subgraphs corresponding to different
clusters are not connected to each other. We derive bounds on the prob-
ability that cluster identification is successful, and use them to predict
“optimal” values of k for the mutual and symmetric k-nearest-neighbor
graphs. We point out different properties of the mutual and symmetric
nearest-neighbor graphs related to the cluster identification problem.

1 Introduction

In many areas of machine learning, neighborhood graphs are used to model lo-
cal relationships between data points. Applications include spectral clustering,
dimensionality reduction, semi-supervised learning, data denoising, and many
others. However, the most basic question about such graph based learning al-
gorithms is still largely unsolved: which neighborhood graph to use for which
application and how to choose its parameters. In this article, we want to make
a first step towards such results in a simple setting we call “cluster identifica-
tion”. Consider a probability distribution whose support consists of several high
density regions (clusters) which are separated by a positive distance from each
other. Given a finite sample, our goal is to construct a neighborhood graph on
the sample such that each cluster is “identified”, that is each high density region
is represented by a unique connected component in the graph. In this paper we
mainly study and compare mutual and symmetric k-nearest-neighbor graphs.
For different choices of k we prove bounds on the probability that clusters can
be identified. In toy experiments, the behavior of the bounds as a function of
k corresponds roughly to the empirical frequencies. Moreover, we compare the
different properties of the mutual and the symmetric nearest-neighbor graphs.
Both graphs have advantages in different situations: if one is only interested in
identifying the “most significant” cluster (while some clusters might still not be
correctly identified), then the mutual kNN graph should be chosen. However, if
one wants to identify many clusters simultaneously the bounds show no differ-
ence between the two graphs. Empirical evaluations show that in this case the
symmetric kNN graph is to be preferred due to its better connectivity properties.



There is a huge amount of literature with very interesting results on connec-
tivity properties of random graphs, both for Erdős-Rényi random graphs (Bol-
lobas, 2001) and for geometric random graphs (Penrose, 2003). Applications
include percolation theory (Bollobas and Riordan, 2006), modeling ad-hoc net-
works (e.g., Santi and Blough, 2003, Bettstetter, 2002, Kunniyur and Venkatesh,
in press), and clustering (e.g., Brito et al., 1997 and Biau et al., in press). In all
those cases the literature mainly deals with different kinds of asymptotic results
in the limit for n → ∞. However, what we would need in machine learning are
finite sample results on geometric random graphs which can take into account
the properties of the underlying data distribution, and which ideally show the
right behavior even for small sample sizes and high dimensions. In this paper we
merely scratch the surface of this long-term goal.
Let us briefly introduce some basic definitions and notation for the rest of the
paper. We always assume that we are given n data points X1, ..., Xn which have
been drawn i.i.d. from some underlying density on Rd. Those data points are used
as vertices in a graph. By kNN(Xj) we denote the set of the k nearest neighbors of
Xj . The different neighborhood graphs, which are examples of geometric random
graphs, are defined as

– the ε-neighborhood graph Geps(n, ε): Xi and Xj connected if ‖Xi−Xj‖ ≤ ε,
– the symmetric k-nearest-neighbor graph Gsym(n, k):

Xi and Xj connected if Xi ∈ kNN(Xj) or Xj ∈ kNN(Xi),
– the mutual k-nearest-neighbor graph Gmut(n, k):

Xi and Xj connected if Xi ∈ kNN(Xj) and Xj ∈ kNN(Xi).

2 Between- and within-cluster connectivity of mutual
and symmetric kNN-graphs

This section deals with the connectivity properties of kNN graphs. The proof
ideas are basically the same as in Brito et al. (1997). However, since we are
more interested in the finite sample case we have tried to make the bounds as
tight as possible. We also make all constants explicit, which sometimes results
in long expressions, but allows to study the influence of all parameters. In Brito
et al. (1997) the main emphasis was put on a rate of k which is sufficient for
connectedness of the mutual kNN graphs, resulting in a choice of k that is
proportional to log (n). However, if one is interested in identifying the clusters
as the connected components of the mutual kNN graph one should optimize
the trade-off between having high probability of being connected within clusters
and high probability of having no edges between the different clusters. Most
importantly, integrating the properties of the mutual and symmetric kNN graph
we derive bounds which work for each cluster individually. This allows us later
on to compare both graphs for different scenarios: identification of all clusters
vs. the “most significant” one.
We assume that our clusters C(1), . . . , C(m) are m disjoint, compact and con-
nected subsets of Rd. The distance of C(i) to its closest neighboring cluster
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C(j) is denoted by u(i), where the distance between sets S1, S2 is measured by
d(S1, S2) = inf{‖x− y‖ |x ∈ S1, y ∈ S2}. Let p(i) be a probability density with
respect to the Lebesgue measure in Rd whose support is C(i). The sample points
{Xi}n

i=1 are drawn i.i.d. from the probability density p(x) =
∑m

j=1 β(j) p(j)(x),
where β(j) > 0 for all j and

∑m
j=1 β(j) = 1. We denote by n(i) the number

of points in cluster C(i) (i = 1, . . . ,m). The kNN radius of a point Xi is the
maximum distance to a point in kNN(Xi). R

(i)
min and R

(i)
max denote the minimal

and the maximal kNN radius of the sample points in cluster C(i). Bin(n, p) de-
notes the binomial distribution with parameters n and p. Since we often need
tail bounds for the binomial distribution, we set D (k;n, p) = P (U ≤ k) and
E (k;n, p) = P (U ≥ k) for a Bin(n, p)-distributed random variable U . Finally,
we denote the ball of radius r around x by B(x, r), and the volume of the d-
dimensional unit ball by ηd.
In the following we will need upper and lower bounds for the probability mass
of balls around points in clusters. These are given by continuous and increas-
ing functions g

(i)
min, g̃

(i)
min, g

(i)
max : [0,∞) → R with g

(i)
min(t) ≤ infx∈C(i) P (B(x, t)),

g̃
(i)
min(t) ≤ infB(x,t)⊆C(i) P (B(x, t)) and g

(i)
max(t) ≥ supx∈C(i) P (B(x, t)).

2.1 Within-cluster connectivity of mutual kNN graphs

The analysis of connectedness is based on the following observation: If for an
arbitrary z > 0 the minimal kNN radius is larger than z, then all points in
a distance of z or less are connected in the kNN graph. If we can now find a
covering of a cluster by balls of radius z/4 and every ball contains a sample point,
then the distance between sample points in neighboring balls is less than z. Thus
the kNN graph is connected. The following proposition uses this observation to
derive a bound for the probability that a cluster is disconnected under some
technical conditions on the boundary of the cluster. These technical conditions
ensure that we do not have to cover the whole cluster but we can ignore a
boundary strip (the collar set in the proposition). This helps in finding a better
bound for the probability mass of balls of the covering.

Proposition 1 (Within-cluster connectedness of Gmut(n, k)). Assume
that the boundary ∂C(i) of cluster C(i) is a smooth (d − 1)-dimensional sub-
manifold in Rd with maximal curvature radius κ(i) > 0. For ε ≤ κ(i), we define
the collar set C(i)(ε) = {x ∈ C(i)

∣∣ d(x, ∂C(i)) ≤ ε} and the maximal covering
radius ε

(i)
max = max

ε≤κ(i)
{ε

∣∣ C(i)\C(i)(ε) connected }. Let z ∈
(
0, 4 ε

(i)
max

)
. Given a

covering of C(i)\C(i)( z
4 ) with balls of radius z/4, let F (i)

z denote the event that
there exists a ball in the covering that does not contain a sample point. Then

P
(
Cluster C(i) disconnected in Gmut(n, k)

)
≤ P

(
R

(i)
min ≤ z

)
+ P

(
F (i)

z

)
. (1)

Proof. The proof is based on the fact that the event {R(i)
min > z} ∩ F (i)

z implies
connectedness of C(i). Namely, sample points lying in neighboring sets of the
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covering of C(i)\C(i)( z
4 ) have distance less than z. Therefore they are connected

by an edge in the mutual kNN graph. Moreover, all sample points lying in the
collar set C(i)( z

4 ) are connected to some sample point in C(i)\C(i)( z
4 ). �

The proof concept of Propositions 1 and 3 does not require smoothness of the
boundary of the cluster. However, the more general case requires a different
construction of the covering which leads to even more technical assumptions
and worse constants.

Proposition 2 (Minimal kNN radius). For all z > 0

P
(
R

(i)
min ≤ z

)
≤ n β(i) E

(
k;n− 1, g(i)

max(z)
)
.

Proof. Assume without loss of generality that X1 ∈ C(i) (after a suitable per-
mutation). Define Ms = |{j 6= s |Xj ∈ B (Xs, z)}| for 1 ≤ s ≤ n. Then

P
(
R

(i)
min ≤ z |n(i) = l

)
≤ l P

(
M1 ≥ k

)
.

Since n(i) ∼ Bin
(
n, β(i)

)
, we have

P
(
R

(i)
min ≤ z

)
≤

n∑
l=0

l P
(
M1 ≥ k

)
P(n(i) = l) = nβ(i)P

(
M1 ≥ k

)
.

Since M1 ∼ Bin (n− 1,P (B(X1, z))), with P (B(X1, z)) ≤ g
(i)
max (z) we obtain

P (M1 ≥ k) ≤ E
(
k;n− 1, g

(i)
max (z)

)
. �

Proposition 3 (Covering with balls). Under the conditions of Proposition 1
there exists a covering of C(i)\C(i)( z

4 ) with N balls of radius z/4, such that
N ≤

(
8d vol

(
C(i)

))
/

(
zdηd

)
and

P
(
F (i)

z

)
≤ N

(
1− g̃

(i)
min

(z

4

))n

.

Proof. A standard construction using a z/4-packing provides us with the
covering. Due to the conditions of Proposition 1 we know that balls of radius
z/8 around the packing centers are disjoint and subsets of C(i). Thus the sum
of the volumes of these balls is bounded by the volume of the cluster and we
obtain N (z/8)d

ηd ≤ vol
(
C(i)

)
. Using a union bound over the covering with

a probability of
(
1− g̃

(i)
min

(
z
4

) )n for one ball being empty we obtain the bound. �

The following proposition gives an easy extension of the result of Proposition 1
to the symmetric k-nearest-neighbor graph:

Proposition 4 (Within-cluster connectedness of Gsym(n, k)). We have

P
(
Cluster C(i) conn. in Gsym(n, k)

)
≥ P

(
Cluster C(i) conn. in Gmut(n, k)

)
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Proof. The edge set of Gmut(n, k) is a subset of the edges of Gsym(n, k). Hence
connectedness of Gmut(n, k) implies connectedness of Gsym(n, k). �

Note that this bound does not take into account the better connectivity proper-
ties of the symmetric kNN graph. Therefore one can expect that this bound is
quite loose. We think that proving tight bounds for the within-cluster connec-
tivity of the symmetric kNN graph requires a completely new proof concept. See
Section 3 for more discussion of this point.

2.2 Between-cluster connectivity of kNN graphs

In this section we state bounds for the probability of edges between different
clusters. The existence of edges between clusters is closely related to the event
that the maximal k-nearest-neighbor radius is greater than the distance to the
next cluster. Therefore we first give a bound for the probability of this event
in Proposition 5. Then we apply this result to the mutual k-nearest-neighbor
graph (in Proposition 6) and to the symmetric k-nearest-neighbor graph (in
Proposition 7). It will be evident that the main difference between mutual kNN
graphs and symmetric kNN graphs lies in the between-cluster connectivity.
Proposition 5 (Maximal nearest-neighbor radius). We have

P
(
R(i)

max ≥ u(i)
)
≤ nβ(i)D

(
k − 1;n− 1, g

(i)
min

(
u(i)

))
.

The proof is omitted here because it is very similar to the proof of Proposition 2.
It can be found in Maier et al. (2007). The previous proposition can be used to
compare Gmut(n, k) and Gsym(n, k) with respect to cluster isolation. We say
that a cluster C(i) is isolated in the graph if there are no edges between sample
points lying in C(i) and any other cluster. In Gmut(n, k) isolation of a cluster
only depends on the properties of the cluster itself:
Proposition 6 (Cluster isolation in Gmut(n, k)). We have

P
(
Cluster C(i) isolated in Gmut(n, k)

)
≥ 1− P

(
R(i)

max ≥ u(i)
)

≥ 1− n β(i)D
(
k − 1;n− 1, g

(i)
min

(
u(i)

))
.

Proof. Since the neighborhood has to be mutual, we have no connections between
C(i) and another cluster if the maximal kNN radius fulfills R

(i)
max < u(i). �

The next theorem shows that the probability for connections between clusters
is significantly higher in the symmetric kNN graph.
Proposition 7 (Cluster isolation in Gsym(n, k)). We have

P
(
C(i) isolated in Gsym(n, k)

)
≥ 1−

m∑
j=1

P
(
R(j)

max ≥ u(j)
)

≥ 1− n

m∑
j=1

β(j)D
(
k − 1;n− 1, g

(j)
min

(
u(j)

))
.
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Proof. Let uij be the distance of C(i) and C(j). The event that C(i) is connected
to any other cluster in Gsym(n, k) is contained in the union {R(i)

max ≥ u(i)} ∪
{∪j 6=i{R(j)

max ≥ uij}}. Using a union bound we have

P
(
C(i) not isolated in Gsym(n, k)

)
≤ P

(
R(i)

max ≥ u(i)
)

+
∑
j 6=i

P
(
R(j)

max ≥ uij
)
.

Using first u(j) ≤ uij and then Proposition 6 we obtain the two inequalities. �

Note that the upper bound on the probability that C(i) is isolated is the same for
all clusters in the symmetric kNN graph. The upper bound is loose in the sense
that it does not respect specific geometric configurations of the clusters where
the bound could be smaller. However, it is tight in the sense that the probability
that cluster C(i) is isolated in Gsym(n, k) always depends on the worst cluster.
This is the main difference to the mutual kNN graph, where the properties of
cluster C(i) are independent of the other clusters.

3 The isolated point heuristic

In the last sections we proved bounds for the probabilities that individual clusters
in the neighborhood graph are connected, and different clusters in the neighbor-
hood graph are disconnected. The bound on the disconnectedness of different
clusters is rather tight, while the bound for the within-cluster connectedness of
a cluster is tight if n is large, but has room for improvement if n is small. The
reason is that the techniques we used to prove the connectedness bound are not
well-adapted to a small sample size: we cover each cluster by small balls and re-
quire that each ball contains at least one sample point (event F (i)

z in Section 2).
Connectedness of Gmut then follows by construction. However, for small n this
is suboptimal, because the neighborhood graph can be connected even though
it does not yet “cover” the whole data space. Here it would be of advantage to
look at connectivity properties more directly. However, this is not a simple task.
The heuristic we propose makes use of the following fact from the theory of ran-
dom graph models: in both Erdős-Rényi random graphs and random geometric
graphs, for large n the parameter for which the graph stops having isolated
vertices coincides with the parameter for which the graph is connected (e.g.,
Bollobas, 2001, p. 161 and Theorem 7.3; Penrose, 2003, p.281 and Theorem
13.17). The isolated point heuristic now consists in replacing the loose bound on
the within-cluster connectivity from Section 2 by a bound on the probability of
the existence of isolated vertices in the graph, that is we use the heuristic

P(C(i) connected) ≈ P(no isolated points in C(i)).

This procedure is consistent for n →∞ as proved by the theorems cited above,
but, of course, it is only a heuristic for small n.

Proposition 8 (Probability of isolated points in Geps). We have

P
(
ex. isol. points from C(i) in Geps(n, ε)

)
≤ β(i) n (1− g

(i)
min(ε))n−1.
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Proof. Suppose there are l points in cluster C(i). Then a point Xi from C(i)

is isolated if min1≤j≤n,j 6=i ‖Xi −Xj‖ > ε. This event has probability less than
(1− g

(i)
min(ε))n−1. Thus a union bound yields

P
(
ex. isol. points from C(i) in Geps(n, ε) |n(i) = l

)
≤ l (1− g

(i)
min(ε))n−1,

and we sum over the Bin(n, β(i))-distributed random variable n(i). �

For the mutual nearest-neighbor graph, bounding the probability of the existence
of isolated points is more demanding than for the ε-graph, as the existence of an
edge between two points depends not only on the distance of the points, but also
on the location of all other points. We circumvent this problem by transferring
the question of the existence of isolated points in Gmut(n, k) to the problem of
the existence of isolated vertices of a particular ε-graph. Namely

{ex. isolated points in Gmut(n, k) } =⇒ {ex. isolated points in Geps (n, Rmin) } .

Proposition 9 (Probability of isolated points in Gmut). Let v =
sup

{
d(x, y)

∣∣x, y ∈ ∪m
i=1C

(i)
}

and b : [0, v] → R be a continuous function such
that P

(
R

(i)
min ≤ t

)
≤ b(t). Then,

P
(
ex. isol. points from C(i) in Gmut(n, k)

)
≤ β(i) n

∫ v

0

(
1− g

(i)
min(t)

)n−1

db (t) .

Proof. Let Amut =
{
ex. isolated points from C(i) in Gmut(n, k)

}
and

Aeps(t) =
{
ex. isolated points from C(i) in Geps(n, t)

)}
. Proposition 8

implies P
(
Amut |R(i)

min = t
)
≤ P

(
Aeps (t)

)
≤ β(i) n

(
1 − g

(i)
min(t)

)n−1.
c(t) = β(i) n

(
1 − g

(i)
min(t)

)n−1 is a decreasing function that bounds
P

(
Amut |R(i)

min = t
)
. Straightforward calculations and standard facts about

the Riemann-Stieltjes integral conclude the proof. For details see Maier et al.
(2007). �

Note that in the symmetric nearest-neighbor graph isolated points do not exist
by definition. Hence, the isolated points heuristic cannot be applied in that case.

4 Asymptotic Analysis

In this section we study the asymptotic behavior of our bounds under some
additional assumptions on the probability densities and geometry of the clus-
ters. Throughout this section we assume that the assumptions of Proposi-
tion 1 hold and that the densities p(i) satisfy 0 < p

(i)
min ≤ p(i)(x) ≤ p

(i)
max

for all x ∈ C(i). We define the overlap function O(i)(r) by O(i)(r) =
inf

x∈C(i)

(
vol

(
B(x, r) ∩ C(i)

)
/ vol (B(x, r))

)
. With these assumptions we can es-

tablish a relation between the volume of a ball and its probability mass,

g
(i)
min(t) = β(i)O

(i)(t)p(i)
minηdt

d and g̃
(i)
min(t) = β(i)p

(i)
mintdηd,
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g(i)
max(t) =

{
tdηdβ(i)p

(i)
max if t ≤ u(i)(

u(i)
)d

ηd

(
β(i)p

(i)
max − pmax

)
+ tdηdpmax if t > u(i),

where pmax = max1≤i≤m β(i)p
(i)
max.

In Proposition 1 we have given a bound on the probability of disconnectedness of
a cluster which has two free parameters, k and the radius z. Clearly the optimal
value of z depends on k. In the following proposition we plug in the expressions
for g̃

(i)
min(t) and g

(i)
max(t) above and choose a reasonable value of z for every k, in

order to find a range of k for which the probability of disconnectedness of the
cluster asymptotically approaches zero exponentially fast.

Proposition 10 (Choice of k for asymptotic connectivity). Define
1/D(i) = 1 + 4d(e2 − 1)p(i)

max/p
(i)
min and

k′ =
1

D(i)
(n− 1)β(i)p

(i)
minηd min

{(
ε(i)
max

)d

,

(
u(i)

4

)d
}

.

Then if n ≥ e/
(
2d β(i) vol(C(i))p(i)

min

)
there exists 0 < γ < 1 such that

P
(
C(i) conn. in Gsym(n, k)

)
≥ P

(
C(i) conn. in Gmut(n, k)

)
≥ 1− 2 e−γ D(i) k,

for all k ∈ {1, . . . , n− 1} with

k′ ≥ k ≥ 1
D(i)

log(2d vol(C(i))p(i)
minβ(i) n(1− γ))

(1− γ)
. (2)

Proof. We give an outline of the proof for the mutual k-nearest-neighbor graph.
For details see Maier et al. (2007). The statement for the symmetric k-nearest-
neighbor graph then follows with Proposition 4. In the following we set zd =

8d vol
(
C(i)

)
αθ/

(
β(i)ηd

)
for a θ ∈ (0, θmax) with θmax =

(
8d vol

(
C(i)

)
p
(i)
max

)−1

and α = k/(n−1). For θ in this interval we can apply a tail bound for the binomial
distribution from Hoeffding (1963). Let z denote the radius that corresponds to
θ and k. With the tail bound for the binomial and standard inequalities for the
logarithm we can show that log

(
P

(
R

(i)
min ≤ z

))
≤ g (θ), where

g (θ) = log
(

β(i)

θα

)
+ nα

(
2 + log 8d vol

(
C(i)

)
p(i)
maxθ − 8d vol

(
C(i)

)
p(i)
maxθ

)
and log (P (F)) ≤ h (θ), where

h(θ) = log
(

β(i)

θα

)
− 2dnαp

(i)
min vol(C(i))θ.

With straightforward calculations and standard inequalities for the ex-
ponential function one can show that for θ∗ = D(i)/

(
2d vol(C(i))p(i)

min

)
8



we have g(θ∗) ≤ h(θ∗). Straightforward calculations show that under the
conditions γ ∈ (0, 1), n ≥ e/

(
2d vol(C(i))(1− γ)β(i)p

(i)
min

)
and that k

is bounded from below as in Equation (2), we have h (θ∗) ≤ −γkD(i).
For all n ≥ e/

(
2d β(i) vol(C(i))p(i)

min

)
we can find γ ∈ (0, 1) such that

n ≥ e/
(
2d vol(C(i))(1− γ)β(i)p

(i)
min

)
. Using g(θ∗) ≤ h(θ∗) ≤ −γkD(i) we

have shown that P
(
R

(i)
min ≤ z

)
≤ exp

(
−γkD(i)

)
and P (F) ≤ exp

(
−γkD(i)

)
.

Reformulating the conditions z/4 ≤ ε
(i)
max and z ≤ u(i) in terms of θ∗ gives the

condition k ≤ k′. �

The result of the proposition is basically that if we choose k ≥ c1+c2 log(n) with
two constants c1, c2 that depend on the geometry of the cluster and the respective
density, then the probability that the cluster is disconnected approaches zero
exponentially in k.
Note that, due to the constraints on the covering radius, we have to introduce
an upper bound k′ on k, which depends linearly on n. However, the probability
of connectedness is monotonically increasing in k , since the k-nearest-neighbor
graph contains all the edges of the (k−1)-nearest-neighbor graph. Thus the value
of the within-connectedness bound for k = k′ is a lower bound for all k > k′ as
well. Since the lower bound on k grows with log(n) and the upper bound grows
with n, there exists a feasible region for k if n is large enough.

Proposition 11 (Maximal kNN radius asymptotically). Let p
(i)
2 =

β(i)O
(i)

(
u(i)

)
p
(i)
min ηd (u(i))d and k ≤ (n− 1)p(i)

2 + 1. Then

P
(
R(i)

max ≥ u(i)
)
≤ nβ(i)e

−(n−1)

„“
p
(i)
2

”2
e−p

(i)
2 +p

(i)
2 − k−1

n−1

«
.

Proof. Using a standard tail bound for the binomial distribution (see Hoeffding,
1963) we obtain from Proposition 5 for (k − 1) ≤ (n− 1)p(i)

2

P
(
R(i)

max ≥ u(i)
)
≤ nβ(i)e

−(n−1)

 
k−1
n−1 log

(k−1)

(n−1)p
(i)
2

+(1− k−1
n−1 ) log

1−(k−1)/(n−1)

1−p
(i)
2

!
.

Using log(1 + x) ≥ x/ (1 + x) and that −w2e−w is the minimum of x log(x/w)
(attained at x = we−w) we obtain the result by straightforward calculations. �

4.1 Identification of clusters as the connected component of a
mutual and symmetric kNN graph

We say that a cluster C(i) is identified if it is an isolated connected compo-
nent in the kNN graph. This requires the cluster C(i) to be connected, which
intuitively happens for large k. Within-cluster connectedness was considered in
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Proposition 10. The second condition for the identification of a cluster C(i) is
that there are no edges between C(i) and other clusters. This event was consid-
ered in Proposition 6 and is true if k is small enough. The following theorems
consider the tradeoff for the choice of k for the identification of one and of all
clusters in both kNN graph types and derive the optimal choice for k. We say
that k is tradeoff-optimal if our bounds for within-cluster connectedness and
between-cluster disconnectedness are equal.

Theorem 12 (Choice of k for the identification of one cluster in
Gmut(n, k)). Define p

(i)
2 as in Proposition 11 and let n and γ be as in Proposi-

tion 10. The tradeoff-optimal choice of k in Gmut(n, k) is given by

k − 1 = (n− 1) p
(i)
2

1− p
(i)
2 e−p

(i)
2

1 + γD(i)
−

log
(

1
2nβ(i)

)
1 + γD(i)

,

if this choice of k fulfills the conditions in Proposition 10 and k < (n−1)p(i)
2 +1.

For this choice of k we have

P
(
C(i) ident. in Gmut(n, k)

)
≥ 1− 4e

−(n−1) γD(i)

1+γD(i)

[
p
(i)
2 (1−p

(i)
2 e−p

(i)
2 )−

log( 1
2 nβ(i))

(n−1)

]
Proof. We equate the bounds for within-cluster connectedness of Proposition 10
and the bound for between-cluster edges of Proposition 6 and solve for k. �

The result of the previous theorem is that the tradeoff-optimal choice of k has
the form k = c3n − c4 log(n) + c5 with constants c3, c4 ≥ 0 and c5 ∈ R, which
depend on the geometry of the cluster and the respective density. Evidently,
if n becomes large enough, then k chosen according to this rule fulfills all the
requirements in Proposition 10 and Theorem 12.
Theorem 12 allows us to define the “most significant” cluster. Intuitively a cluster
is more significant the higher its density and the larger its distance to other
clusters. Formally the “most significant” cluster is the one with the best rate for
identification, that is the maximal rate of the bound:

max
1≤i≤m

γD(i)

1 + γD(i)

[
p
(i)
2 (1− p

(i)
2 e−p

(i)
2 )−

log( 1
2nβ(i))
n

]
The term in front of the bracket is increasing in D(i) and thus is larger, the
closer p

(i)
max and p

(i)
min are, that is for a fairly homogeneous density. The second

term in the brackets approaches zero rather quickly in n. It is straightforward
to show that the first term in the bracket is increasing in p

(i)
2 . Thus a cluster

becomes more significant, the higher the probability mass in balls of radius u(i),
that is, the higher β(i), p

(i)
min, u(i) and the higher the value of the overlap function

O(i)(u(i)).
We would like to emphasize that it is a unique feature of the mutual kNN graph
that one can minimize the bound independently of the other clusters. This is

10



not the case for the symmetric kNN graph. In particular, in the case of many
clusters, a few of which have high probability, the differences in the rates can be
huge. If the goal is to identify not all clusters but only the most important ones,
that means the ones which can be detected most easily, then the mutual kNN
graph has much better convergence properties than the symmetric kNN graph.
We illustrate this with the following theorem for the symmetric kNN graph.

Theorem 13 (Choice of k for the identification of one cluster in
Gsym(n, k)). Define ρ2 = min1≤i≤m p

(i)
2 and let n and γ be as in Proposition 10.

The tradeoff-optimal choice of k in Gsym(n, k) is given by

k − 1 = (n− 1) ρ2
1− ρ2e

−ρ2

1 + γD(i)
−

log
(

n
2

)
1 + γD(i)

,

if this choice of k fulfills the conditions in Proposition 10 and k < (n− 1)ρ2 +1.
For this choice of k

P
(
C(i) identified in Gsym(n, k)

)
≥ 1− 4e

−(n−1) γD(i)

1+γD(i)

[
ρ2(1−ρ2e−ρ2 )−

log( n
2 )

(n−1)

]
.

Proof. Combining Proposition 7 and Proposition 11 we obtain

P
(
Cluster C(i) not isolated in Gsym(n, k)

)
≤ n

m∑
i=1

β(i)e
−(n−1)(ρ2

2e−ρ2+ρ2− k−1
n−1 ).

Equating this bound with the within-connectedness bound in Proposition 10 we
obtain the result. �

A comparison with the rate of Theorem 12 for the mutual kNN graph shows
that the rate of the symmetric kNN graph depends on the “worst” cluster. This
property would still hold if one found a tighter bound for the connectivity of the
symmetric kNN graph.

Corollary 14 (Choice of k for the identification of all clusters in
Gmut(n, k)). Define pratio = max1≤i≤m

(
p
(i)
max/p

(i)
min

)
and ρ2 = min1≤i≤m p

(i)
2 .

Let 1/D = 1 + 4d(e2 − 1)pratio and n, γ be as in Proposition 10. The tradeoff-
optimal k for the identification of all clusters in Gmut(n, k) is given by

k − 1 = (n− 1)ρ2
1− ρ2e

−ρ2

1 + γD
−

log
(

n
2m

)
1 + γD

,

if this choice of k fulfills the conditions in Proposition 10 for all clusters C(i),
i = 1, . . . ,m and k < (n− 1)ρ2 + 1. For this choice of k we have

P
(
All clusters ident. in Gmut(n, k)

)
≥ 1− 4 m e

−(n−1) γD
1+γD

[
ρ2(1−ρ2e−ρ2 )−

log( n
2m

)
(n−1)

]
.

11



Proof. Using a union bound, we obtain from Proposition 10 and Proposition 11

P
( m⋃

i=1

C(i) not isolated
)
≤ n

m∑
i=1

β(i)e
−(n−1)(ρ2

2e−ρ2+ρ2− k−1
n−1 )

P
( m⋃

i=1

Cluster C(i) disconnected in Gmut(n, k)
)
≤ 2m e−γk D

We obtain the result by equating these two bounds. �

The result for the identification of all clusters in the mutual kNN graph is not
much different from the result for the symmetric kNN graph. Therefore the
difference in the behavior of the two graph types is greatest if one is interested
in identifying the most important clusters only.

5 Simulations

The long-term goal of our work is to find rules which can be used to choose
the parameters k or ε for neighborhood graphs. In this section we want to test
whether the bounds we derived above can be used for this purpose, at least
in principle. We consider a simple setting with a density of the form f(x) =
βf̃(x) + (1− β)f̃(x− (u + 2)e1), where β ∈ (0, 1) is the weight of the individual
clusters, f̃ is the uniform density on the unit ball in Rd, e1 = (1, 0, . . . , 0)′, and
u is the distance between the clusters.
First we compare the qualitative behavior of the different bounds to the cor-
responding empirical frequencies. For the empirical setting, we randomly draw
n points from the mixture density above, with different choices of the param-
eters. For all values of k we then evaluate the empirical frequencies Pemp for
within-cluster connectedness, between-cluster disconnectedness, and the exis-
tence of isolated points by repeating the experiment 100 times. As theoretical
counterpart we use the bounds obtained above, which are denoted by Pbound.
To evaluate those bounds, we use the true parameters n, d, β, u, pmin, pmax.
Figure 1 shows the results for n = 5000 points from two unit balls in R2 with a
distance of u = 0.5 and β = 0.5. We can see that the bound for within-cluster
disconnectedness is loose, but still gets into a non-trivial regime (that is, smaller
than 1) for a reasonable k. On the other hand the bound for the existence of
isolated points indeed upper bounds the within-cluster disconnectedness and is
quite close to the true probability. Hence the isolated point heuristic works well
in this example. Moreover, there is a range of values of k where both the empir-
ical frequencies and the bounds for the probabilities become close to zero. This
is the region of k we are interested in for choosing optimal values of k in order to
identify the clusters correctly. To evaluate whether our bounds can be used for
this purpose we sample points from the density above and build the kNN graph
for these points. For each graph we determine the range of kmin ≤ k ≤ kmax for
which both within-cluster connectedness and between-cluster disconnectedness
are satisfied, and compute k̂min and k̂max as the mean values over 100 repetitions.

12



To determine “optimal” values for k we use two rules:

kbound := argmin
k

(Pbound (connected within) + Pbound (disconnected between))

kiso := argmin
k

(Pbound (no isolated points) + Pbound (disconnected between)) .

The following table shows the results for Gmut(n, k).

n kiso kbound k̂min k̂max

500 17 25 7.2± 1.2 41.0± 6.5
1000 29 46 7.3± 1.2 71.7± 9.4
5000 97 213 8.5± 1.2 309.3± 16.9
10000 101 425 8.8± 1.1 596.6± 21.1

We can see that for all values of n in the experiment, both kiso and kbound lie
well within the interval of the empirical values k̂min and k̂max. So in both cases,
choosing k by the bound or the heuristic leads to a correct value of k in the sense
that for this choice, the clusters are perfectly identified in the corresponding
mutual kNN graph.
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Fig. 1. Bounds and empirical frequencies for Gmut(n, k) for two clusters with β = 0.5
and u = 0.5 (for plotting, we set the bound to 1 if it is larger than 1).

Finally we would like to investigate the difference between Gmut and Gsym.
While the within-cluster connectivity properties are comparable in both graphs,
the main difference lies in the between-cluster connectivity, in particular, if we
only want to identify the densest cluster in an unbalanced setting where clusters
have very different weights. We thus choose the mixture density with weight
parameter β = 0.9, that is we have one very dense and one very sparse cluster.
We now investigate the identification problem for the densest cluster. The results
are shown in Figure 2. We can see that Gsym(n, k) introduces between-cluster
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Fig. 2. Within- and between-cluster connectivity for Gmut(n, k) and Gsym(n, k) for
two unbalanced clusters with β = 0.9 and u = 0.5. Note that the curves of Pbound for
Gmut(n, k) and Gsym(n, k) lie on top of each other in the top plot. The scale of the
horizontal axis is different from Figure 1.

edges for a much lower k than it is the case for Gmut(n, k), which is a large
disadvantage of Gsym in the identification problem. As a consequence, there is
only a very small range of values of k for which the big cluster can be identified.
For Gmut, on the other hand, one can see immediately that there is a huge range
of k for which the cluster is identified with very high probability. This behavior
is predicted correctly by the bounds given above.

6 Conclusions and further work

We studied both Gsym and Gmut in terms of within-cluster and between-cluster
connectivity. While the within-cluster connectivity properties are quite similar in
the two graphs, the behavior of the between-cluster connectivity is very different.
In the mutual kNN graph the event that a cluster is isolated is independent of all
the other clusters. This is not so important if one aims to identify all clusters, as
then also in the mutual graph the worst case applies and one gets results similar
to the symmetric graph. However, if the goal is to identify the most significant
clusters only, then this can be achieved much easier with the mutual graph, in
particular if the clusters have very different densities and different weights.
It is well known that the lowest rate to asymptotically achieve within-cluster
connectivity is to choose k ∼ log(n) (e.g., Brito et al., 1997). However, we have
seen that the optimal growth rate of k to achieve cluster identification is not
linear in log(n) but rather of the form k = c3n − c4 log(n) + c5 with constants
c3, c4 ≥ 0 and c5 ∈ R. This difference comes from the fact that we are not
interested in the lowest possible rate for asymptotic connectivity, but in the rate
for which the probability for cluster identification is maximized. To this end we
can “afford” to choose k higher than absolutely necessary and thus improve the
“probability” of within-connectedness. However, as we still have to keep in mind
the between-cluster disconnectedness we cannot choose k “as high as we want”.
The rate now tells us that we can choose k “quite high”, almost linear in n.
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There are several aspects about this work which are suboptimal and could be
improved further:
Firstly, the result on the tradeoff-optimal choice of k relies on the assumption
that the density is zero between the clusters We cannot make this assumption
if the points are disturbed by noise and therefore the optimal choice of k might
be different in that case.
Secondly, the main quantities that enter our bounds are the probability mass
in balls of different radii around points in the cluster and the distance between
clusters. However, it turns out that these quantities are not sufficient to describe
the geometry of the problem: The bounds for the mutual graph do not distinguish
between a disc with a neighboring disc in distance u and a disc that is surrounded
by a ring in distance u. Obviously, the optimal values of k will differ. It would
be possible to include further geometric quantities in the existing proofs, but
we have not succeeded in finding simple descriptive expressions. Furthermore,
it is unclear if one should make too many assumptions on the geometry in a
clustering setting.
Finally, we have indicated in Section 5 how our bounds can be used to choose
the optimal value for k from a sample. However, in our experiments we simply
took most of the parameters like u or β as given. For a real world application,
those parameters would have to be estimated from the sample. Another idea is
to turn the tables: instead of estimating, say, the distance u between the clusters
for the sample and then predicting an optimal value of k one could decide to go
for the most significant clusters and only look for clusters having cluster distance
u and cluster weight β bounded from below. Then we can use the bounds not
for parameter selection, but to construct a test whether the clusters identified
for some value of k are “significant”.
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